Exact Solutions for 2D cubic-quintic Ginzburg-Landau equation

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Exact solutions of the 2D Ginzburg-Landau equation by the first integral method

The first integral method is an efficient method for obtaining exact solutions of some nonlinear partial differential equations. This method can be applied to non integrable equations as well as to integrable ones. In this paper, the first integral method is used to construct exact solutions of the 2D Ginzburg-Landau equation.

متن کامل

On a Cubic-quintic Ginzburg-landau Equation with Global Coupling

We study standing wave solutions in a parabolic partial diierential equations which consists of a cubic-quintic equation stabilized by global coupling A 2 (y) dy : We classify the existence and stability of all posssible standing wave solutions.

متن کامل

Spectra of Short Pulse Solutions of the Cubic–Quintic Complex Ginzburg–Landau Equation near Zero Dispersion

We describe a computational method to compute spectra and slowly decaying eigenfunctions of linearizations of the cubic–quintic complex Ginzburg– Landau equation about numerically determined stationary solutions. We compare the results of the method to a formula for an edge bifurcation obtained using the small dissipation perturbation theory of Kapitula and Sandstede. This comparison highlights...

متن کامل

Singularities and special soliton solutions of the cubic-quintic complex Ginzburg-Landau equation.

Soliton solutions of the one-dimensional (1D) complex Ginzburg-Landau equations (CGLE) are analyzed. %e have developed a simple approach that applies equally to both the cubic and the quintic CGLE. This approach allows us to find an extensive list of soliton solutions of the COLE, and to express all these solutions explicitly. In this way, we were able to classify them clearly. %'e have found a...

متن کامل

Exploding soliton and front solutions of the complex cubic-quintic Ginzburg-Landau equation

We present a study of exploding soliton and front solutions of the complex cubic–quintic Ginzburg–Landau (CGLE) equation. We show that exploding fronts occur in a region of the parameter space close to that where exploding solitons exist. Explosions occur when eigenvalues in the linear stability analysis for the ground-state stationary solitons have positive real parts. We also study transition...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Physics: Conference Series

سال: 2008

ISSN: 1742-6596

DOI: 10.1088/1742-6596/96/1/012148